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Abstract

A hierarchy of high-order regridding-remapping schemes for usgeimeralized vertical co-
ordinate ocean models is presented. The proposed regridding{pérgafpamework is suc-
cessfully used in a series of idealized one-dimensional numericatimergs as well as two-
dimensional internal wave and overflow test cases. The model ibleaplreplicatingz-, sigma-
and isopycnal-coordinate results, among others. Particular emphadécéd on the design of
a continuous isopycnal framework, which is a more general altem&tivthe layered isopyc-
nal paradigm. Continuous isopycnal coordinates use target intetttarcgties to define layers.
In contrast to traditional layered isopycnal models, in which along-ldgeisity gradients van-
ish, general coordinate approaches must deal with extra terms.x&opée, the calculation of
pressure gradient force is more complicated and must be evaluatefdlia High-order re-
constructions within boundary cells are crucial for obtaining sensiblelteeand for reducing
spurious diffusion near boundaries. Vertical advection is implicitly erdieddn the remapping
step and directly benefits from high-order schemes. Volume and a#rgare conserved to
machine precision, which is a necessary ingredient for long-termnodéaate modeling. This
hybrid vertical coordinate model provides the framework to easily caghe impact of different
coordinate systems on dynamics.

Keywords: Generalized vertical coordinates; Hybrid vertical cooetes; Remapping schemes;
Ocean modeling; Continuous isopycnal coordinates.

1 Introduction

It is quite common to categorize ocean models accordingddype of coordinates used in the
vertical. Geopotential- ot-coordinate models use a grid for which the vertical incretat a given
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level does not vary horizontally (except where partial stege used) and are particularly well suited
to specifying resolution in the surface boundary layer.rdierfollowing- or o-coordinate models
stretch and shrink the vertical grid in order to conform te bottom topography and are widely used
for coastal applications. Isopycnal- picoordinate models use a grid defined in terms of layers of
constant potential densttyand are ideal for representing the adiabatic nature of teaminterior.
Detailed discussions on these model categories may be fsedhere (Griffies et al., 2000a; Song
and Hou, 2006).

Each one of these coordinates may be severely deficient resepting certain key physical
processes. Two approaches have been actively pursued éadlyefis issue: (1) alter and improve
the subgrid-scale parameterizations to counteract isstigiag from the choice of coordinates; or
(2) move away from the single-coordinate paradigm and tds/aybrid representations (i.e., gen-
eralized coordinates), which are combinations of two orengartical grid types within the same
framework (Kasahara, 1974; Bleck and Boudra, 1981; Gefid93; Oberhuber, 1993; Bleck, 2002;
Halliwell, 2004; Song and Hou, 2006). Due to the dynamicalireof the ocean, these hybrid coor-
dinate systems are adapted in the course of the simulatiunhws often implemented via Arbitrary
Lagrangian-Eulerian (ALE) algorithms (Donea et al., 2004)

A successful hybrid coordinate system is contingent on trahiegridding and remapping steps.
Regridding is concerned with optimally locating the newtioad grid. The remapping step acts to
remap all variables from the old grid onto the new grid. Imfing the accuracy of remapping is a
major research issue in hybrid coordinate ocean models.tidddl complications arise when the
model’s regridding variable, such as density, depends bnityaand temperature via a nonlinear
equation of state. When remapping of the state variablesrecawnew density profile is obtained
via the equation of state. Given a set of target densitiegvagrid can then be determined. If
the regridding and remapping schemes are inaccurate, dhisled problem is not guaranteed to
converge and the vertical grid is at risk of drifting awayrfrany sensible state (especially when
the remapping is overly diffusive). One way to circumvens ibroblem is to remap only one of the
variables (either temperature or salinity) and, given Hyet density, diagnose the variable that was
not remapped (Halliwell, 2004). However, this approachuitssn non-conservation of the variable
that is not remapped, which is unacceptable for long-teimatke simulations. The issue of building
a consistent regridding scheme has yet to be fully addredsigh-order remapping schemes have
already been explored by the authors (White and Adcroft, 2808 the current paper extends our
previous work to provide an effective and consistent hybddrdinate framework.

One of the objectives of building a general coordinate fraor& is to enable the comparison
of different vertical coordinate systems within a singlanfrework. Though such intercomparison
exercises have taken place in the past (Chassignet et @0; ¥dllebrand et al., 2001), they gen-
erally involve different models, which, apart from the veal grid, differ in many other aspects.
This limitation raises the question as to whether diffeemninn model solutions are only caused by
different vertical grids and stresses the need for a sirrglméwork in which to evaluate the impact
of coordinate choice.

Two directions of improvement of the generalized coordinaaradigm are investigated. First,
we explore the regridding step in detail and explain how &igiea continuous isopycnal framework
using high-order interpolating techniques to determiresltitation of given target interface densi-
ties. Second, we seek to improve the reconstruction witbimbdary cells for both the regridding
and remapping steps by no longer resorting to piecewisetaotss when deemed appropriate. It is
shown that using high-order extrapolation at the boundasieritical for obtaining sensible results.

IThroughout this manuscript, density actually refers to ptiéé density with respect to a reference pressure, usélly
MPa in global ocean models.



2 Regridding framework

[Figure 1 about here]

Regridding-remapping algorithms involve a regriddingpsterhereby a new grid is generated
based on some criteria, and a remapping step, whereby tiadbher are remapped from the old grid
onto the new grid (Figure 1). It is generally required tha tbmapping be both conservative and
monotonic in the sense that no new extrema should be createexisting ones amplified. This
constraint is particularly important in applications wédroundedness of some variables must be
guaranteed or when non-monotonicity would trigger corivecdjustments (Griffies et al., 2000a).
High-order remapping schemes were studied by White and Ad@@08). We now concentrate on
regridding and lay out the necessary tools needed to obtaomsistent hybrid coordinate frame-
work.

If a coordinate is cast in a functional form of independemtalzles (e.g., geopotential or terrain-
following) then regridding is relatively straightforwashd we refer the interested reader to the ex-
isting literature (e.g. see references mentioned by Gsiffteal. (2000a) and Song and Hou (2006)).
In contrast, coordinates that are function of dependeriablas (e.g., density) have traditionally
been implemented in a layered formulation. Here, the lagaisidies are restored to target values
by means of entrainment and detrainment schemes, whicheavotked out in two ways. One
technique is local and consists in displacing water massegden adjacent layers until target val-
ues are reached. This is the common approach (Hallberg, B)@ck, 2002; Halliwell, 2004) and
implicitly assumes a piecewise constant representatitmmeach layer. Building on this piecewise
layered representation, one might want to extend this ambrdy using a globally reconstructed
profile. Here, the objective is to determine the new grid hstat the integral of density over the
new layers matches target values. This scenario is illiestren Figure 2. It turns out that there is
no unique solution defining the set of layers. To avoid thizbfgm, we choose to use a contin-
uous representation of density (i.e., not layered), whittwa meaningful interpolation. We can
then specify coordinates via interface target densitieg sWould emphasize that target densities
(whether interface or layer) define the grid but do not hawe@ysical meaning. In that respect,
using target interface densities is no more arbitrary treingitarget layer densities.

[Figure 2 about here]

In a regridding-remapping context, building continuouspigcnal coordinates presents two ma-
jor difficulties. (1) Density depends on salinity and tengtere via the equation of state. When
these are remapped, each layer of the new grid inherits a ragitgt, which alters the very density
profile upon which the new grid was based. The problem is tbupled and achieving convergence
is essential to ensure the stability of the model. (2) Foctical reasons, the adiabatic character of
the flow must be satisfied as accurately as possible (Griffies,e2000b). Any spurious mixing
resulting from regridding-remapping inaccuracies mushbeimized. These two difficulties are
addressed in this paper. In contrast, layered isopycnakfaade built in such a way that they are
intrinsically adiabatic.

2.1 Continuous isopycnal coordinates

A few notational conventions simplify the exposition ofghiork.

Notation 1 Gy refers to a one-dimensional, nonuniform grid made upVotells of widthshy,
k=1,...,N,and coordinatesy, k = 1,..., N + 1, such thati, = xp+1 — xx.



Notation 2 We work in a finite-volume sense and every variables defined in terms of its cell
valuesu;, onGy.

Notation 3 Within each cell of widthh;, = =41 — x, use will be made of a local coordinate
¢ €10, 1] such that

v = op+ (Trp1 — 1) € )
= T+ hkgv

wherez is the global coordinate.

The termsconser vative reconstruction andcontinuous reconstruction will be used throughout the
text. A reconstruction is defined as a piecewise polynongplesentation of the data known at
the cell level. A reconstruction is said to be conservativeewthe average of the polynomial over
each cell is equal to the cell value. The conservative reoaction over cellk is notedRy (x) and

satisfies
1 Tk+41

1
i = /0 Ri(€) dé = . @

A reconstruction is said to be continuous when it is contirsiover the entire domain. The deriva-
tives of continuous reconstructions are not required tadoicuous. Note that building a profile that
satisfies monotonicity, continuity and conservation isegalty not possible. We therefore choose
the monotonic reconstruction to satisfy conservatiogontinuity, but not both.

The regridding-remapping algorithm can be summarized lémiis. We are given a grig and
cell averagesi;, representing some scatar A function f(u) andk + 1 target valueg,. are given.
Cellwise values of are notedf, = f(u). The objective is to determine the new g such that
fint(Z) = tx, wherez, are the coordinates defining the gﬁdf and fin; is a reconstruction that de-
pends onf;, and is used to interpolate the grid. The scalés then remapped frordy ontoG, and
a new reconstruction may be determined in order to obtaith&narid. This procedure is iterated
until convergence to a given tolerance. While remapping m&semust be based on conservative
reconstructions, regridding schemes may rely on eithesexative or continuous reconstructions.

In the context of an isopycnal coordinate ocean modag the density and. can be salinity
or temperature. Density is the variable used for the regmglavhile salinity and temparature are
remapped. For the sake of clarity, we assume that the fun¢taepends only on one variable. We
also assume that cell valugs = f(u;) are monotonically increasing on the initial gigtk,. This
is a reasonable assumption for stably stratified flows (temsireases with depth) and is required
to uniquely determine the grid based on target interfacaeestl,. Note that the reconstructiofi
depends on cellwise valugis = f(u;). An alternative would be to first compute the reconstruction
uin; for the independent variableand, then, defingin; = f(uint). This method, however, does not
guarantee thafi,: is monotonically increasing when a nonlinear equation afesis used. For the
sake of simplicity and perhaps at the cost of a small loss afiracy, we choose the first approach.

2.2 Regridding schemes

As previously mentioned, regridding can be based eitheramservative or continuous recon-
structions. By allowing continuous, but not necessarilgsarvative, reconstructions, we are able to
expand the suite of schemes presented by White and Adcrdi8j2®oth types of reconstruction
are acceptable since neither local conservation nor gladratinuity are required for the regridding
step of the regridding-remapping algorithm. We requiresthgrofiles to be globally monotonic.
Each cellwise polynomial must be monotonic; this propestyermed local monotonicity. When



combined with the requirement that all discontinuities tod £dge values (if any) are monotonic,
global monotonicity follows. Global monotonicity must batisfied to provide unique locations of
target interface values.

2.2.1 Conservative reconstructions

All remapping schemes presented by White and Adcroft (2008)h as variations of the piece-
wise parabolic methodrPM) and the new piecewise quartic metheah(1) are motononic and con-
servative and can therefore also be used for the regridddegause these schemes are constrained
to be conservative with respect to the cell values, they igdligeare not continuous. Regarding
edge-value and edge-slope estimates, the same notatibatassed by White and Adcroft (2008)
will be used here. Hencé,, andih, respectively refer to explicit and impliciith-order accu-
rate estimates. Explicit estimatks are computed by fitting a polynomial in a finite-volume sense
through the data within contiguous cells and evaluating the polynomial at the iooatf the edge.
Implicit estimates are based on compact schemes and rebuaisolution of a tridiagonal system.
For a given order of accuracy, implicit estimates are mo@ieate than explicit estimates. For a
given scheme, when both the edge values and the edge sl@pasedt, their order of accuracy is
mentioned following the scheme name (erpM ihyihs means thath, edge values anths edge
slopes are used).

2.2.2 Continuous reconstructions

A continuous linear reconstruction based on the cell valteferred to a®1m, not to be confused
with the discontinuou®LM) requires the determination of the single edge value atrtexfaces
between cells. A continuous cubic reconstruction (refbteaspP3m) requires the estimation of
the edge slopes in addition to the edge values. The slope®tdneed to be uniquely defined
at each edge: the slopes may differ when the edge is appmbdicma the left and right. These
two schemes are second- and fourth-order accurate, résggcifo be monotonic, the continuous
linear reconstruction simply requires the edge valuesstbditween neighboring cell averages. The
variety of high-order edge-value estimates can be used tagether with the technique to bound
the edge values to ensure monotonicity (White and Adcrofi820in contrast, the continuous cubic
reconstruction needs to be properly limited, as describetbtail in the appendix.

2.3 A hierarchy of regridding-remapping schemes

Given the regridding schemes introduced above and the ngim@gchemes presented by White
and Adcroft (2008), many choices are available for the deling-remapping algorithm. Table 1
summarizes the selection of 30 regridding-remapping selsetihat are considered in this paper,
together with their order of accuracy. An order of accura€ymeans that the scheme can exactly
retrieve a global polynomial of degree — 1 based on the cell values. In other words, for this
polynomial of degree. — 1, the new grid obtained during the regridding step (via ipddation) will
be exactind the remapping between the old and new grids will be exactAcmmparison between
a selection of continuous and conservative reconstrusiibemes is provided in Figure 3. The test
profile in Figure 3 is defined of®), 1] as follows:

{i [1 + tanh (40(z — 0.25))] if 2 < 0.4, )

3+ 1 [1 + tanh (15(z — 0.65))] otherwise



Conservative schemes outperform continuous ones of the sader because they can represent
sharp gradients more accurately by allowing discontipsiti
[Figure 3 about here]

3 Extrapolation schemes at the boundaries

To preserve monotonicity of cell values, the reconstructigthin boundary cells is necessarily
limited to piecewise constants. In other words, boundatyv@adues are treated as extrema. As
will be shown in test cases, there is a lot to gain from relgstime monotonicity constraint within
boundary cells. This relaxation can be done by carefullyapdlating the boundary edge values
(and edge slopes when needed) to reconstruct the profile.

In the following, it is assumed that the reconstruction withll interior cells is known and
boundary cell reconstructions need to be determined. Thanimg procedures apply to the left
boundary cell only. Extension to the right boundary celltigightforward. The indexe8 and 1
refer to the boundary cell and the cell next to it, respettiv€ell widths are noted, andh;. Cell
values are noted, and ;. The reconstructions are notdt)(¢) and R, (§), where use is made
of the local coordinate Ry (£) must be determined anfl; (£) is known. A comparison of several
extrapolation schemes is illustrated in Figure 4.

[Figure 4 about here]

3.1 Extrapolation for the P1M scheme

Two edge values are needed fdm. The right edge value is known and the left one must be
extrapolated. The one-sided slope, expressed in the locatlimate system of the boundary cell, is
first computed:

U1 — U

=2
7 T+ I

ho.
TheP1Mm reconstruction is then given by
Ro(§) =ur +o(§—1).

3.2 Extrapolation for the PLM scheme

Only the slope must be determined. Enforcing local consienvdixes the second degree of
freedom. The slope is computed based on the right edge valaad the cell averags). Expressed
in the local coordinate system of the boundary cell, we have

022(’[1,3—’[1,0).

ThePLM reconstruction is then given by
_ 1
Ro(§) =to +o (f - 2) .

3.3 Extrapolation for the PPMscheme

To determine a parabola within the boundary cell, we nee@terthine three degrees of freedom.
The right edge value:r and slopeu/, are known from the adjacent cell. The constraint of local



conservation closes the system. Given these three panaytbie left edge value is given by
— 1 /
up = SUO + 5“1% - 2UR.

Given the parametersy,, ur andig, the resulting parabola is limited using the standard ptace
developed by Colella and Woodward (1984).

3.4 Extrapolation for the P3M scheme

Higher-order extrapolations, such as cubic, are trickiecguse the use of directionally-biased
data often leads to large-amplitude oscillations. As a equence, a cubic based on local conserva-
tion as well as on the right edge value, slope and curvatwielyinaccurate estimates for the left
edge value and slope and a very inaccurate reconstructieralbvA more subdued extrapolation
method is needed, which rational functions can fulfill. Th#&anal functions presented by Xiao
et al. (2002) are monotonic by construction and possess tegrees of freedom. The general form
is

2
L(¢) = %
(1+5¢)

wherea, b and 3 are parameters to be determined. This determination carbe loy enforcing
local conservation and the right edge value and slope (wdnielknown). Doing so, we obtain

: (4)

ﬁ — W_L
R

b = UR(ﬁ—l—l)—’l],

a = a(B+1)—0b.

Once the rational function is known, the left edge value dogesare given by
ur = a

and
), =2(b— ap)

respectively. Given both edge values and both edge sldpesubic is completely determined and
limited following the procedure described in the appendix.

The oscillation-free nature and accuracy provided by ratidunctions come at a price. A
rational function such as Eq. (4) has a singularity,at= —1/43, the location of which matters.
Of course, the singularity must not lie A, 1]. However, this constraint alone does not prevent
erratic behavior. Let us assume that the data set is momaibnincreasing#; > o). In that case,
enforcing local conservation constrains the boundary addige estimate to be smaller thag. If
&, < 0, there is no guarantee that the value of the rational funaidahe boundary will be bounded
at all. This behavior can be likened to that of the functiet/(z + ¢) wheree < 1. The desired
behavior would be obtained by requirigg > 1. In that case, it is guaranteed that the rational
function is asymptotic within the cell and, therefore, bded from below. An example function is
—1/(xz — 1 — €). By examining Eq. (4), the singularity is located at:

!
Ur

’U/R—2(UR—’U,0).

&=



Since we have assumed}, > 0, to ensure thag, > 1 requires that.z > u and
up > 2 (ug — o) (5)

Note that whenu, = 2 (ug —9), 8 = 0 and the rational function reverts tLm . When the
rational function does not behave properly, i.e., when Bjjignot obeyed, the boundary edge value
and slope are estimated usipgM extrapolation, as described above.

3.5 Extrapolation for the PQM scheme

Extrapolation forrQM works in a way very similar to the cubic extrapolation scheejuartic
has five degrees of freedom. We use local conservation andgheedge value and slope, as
calculated from the quartic in the adjacent cell. The bounddge value and slope are determined
using the rational function, Eq. (4). When the latter is nqirapriate because of the location of the
singularity, left edge value and slope are estimated using The quartic is then limited following
the procedure detailed by White and Adcroft (2008).

4 Convergence and error analysis

Convergence and error analyses of remapping schemes aweebken investigated by White
and Adcroft (2008). In this section, we briefly explore thensergence properties of regridding-
remapping schemes for use in the context of continuous @wlycoordinates. Idealized one-
dimensional test cases are considered.

[Figure 5 about here]
A full regridding-remapping iteration is presented in Higb for the profile defined by

= % [1 + tanh (5(x — 0.5))] (6)
and usingP1M ihy for the regridding step andL™m for the remapping step. Note that, in this
particular case, we are simply assumifi@) = w«, which eases the understanding of the algorithm.
A detailed explanation of the iterative procedure is giverihe caption of Figure 5. In Table 2,
several error measures are used to evaluate the perfornod3€eregridding-remapping schemes
in seeking the location of the 21 target valugs0,0.05,...,1.0} for the profile defined by Eq.
(6). Note that when a given target value is out of range, itation is set to be equal to that of the
overtaken boundary. Each cell of Table 2 contains four nusibe

The first one is the number of iterations required to attaid gonvergence to a tolerance of
10~5. The deviation between successive grids is calculated as

u(z)

1 N+1 1/2
DI =5 Y (xk—mf] (7)
k=1

wherem is the iteration number;;, are coordinates of the old grid arg are coordinates of the
new grid. lterations stop wheR (™ is smaller than a given tolerance.

The second number of each cell in Table 2 is fhenorm of the error between the exact profile
and the reconstruction used for remapping, computed oragigftid. It is defined as

Th+1

N 1/2
& = [Z [ ) - Ruta)y? dx] 7 (®)
k=1"%k

8



whereu(x) is the exact profile andy () is the reconstruction on cell. When the reconstruction
used for remapping is exact, this reconstruction error slzes. This property remains true even
when the reconstruction used for regridding is inexacthht tase, the new grid will be inexact but
since the grid-on-grid remapping is exact, cell averagesraoonstructions remain exact.

The third number of each cell in Table 2 is the grid error, wiigceasures the error between the
approximate grid obtained at the end of the iterative pracednd the exact grid based on the exact
profile. The error measure is computed as follows:

L N1 1/2
_ _exach?
£2= |y 2 (o —ak t)] : ©)
k=1

For the grid error to vanish, both the reconstruction useddgridding and the reconstruction used
for remapping must be exact. It is therefore the most holetior measure of all.

The fourth, and last, number of each cell in Table 2 is a measithe error between cell values
obtained on the last grid and the exact cell values compuidHai grid and based on the analytical
profile. The error is calculated as follows:

N 1/2
& = lz hie (i — uzxa“)Q] , (10)
k=1

which vanishes when the reconstruction used for remapgiegact. In Table 2, the error measures
are nondimensional. The most reliable schemes are thosarthable to quickly determine an
accurate grid. These schemes have the smallest grid eqrofQF and they converge to the final grid
in few iterations. In addition, if the reconstruction errgg. (8), is small, any subsequent arbitrary
regridding (i.e., not necessarily isopycnal) will yielctacate cell values through remapping. In view
of these criteria, any scheme usingM for remapping should be ruled out, if only for the lack of
convergence. The schemes base@qQm remapping by far outperform their peers wherm, P3m

or PQM are used for regridding. Smaller grid errors are achievedsigg various combinations of
pPMandPQM schemes with the smallest being obtainedrdav ihgihs (regridding) -PQM ihyihs
(remapping).

Estimatingih, andihg edge values andhs andihs edge slopes require solving tridiagonal
systems. As explained by White and Adcroft (2008), floy edge values anths edge slopes, the
entries of the systems are closed-form expressions:/koedge values anths; edge slopes, how-
ever, the entries of the tridiagonal system are determiyesblving6 x 6 linear systems when the
grid is nonuniform (for uniform grids, closed-form exprésss are easy to obtain). The linear sys-
tems are composed of powers of coordinates, ugftavhich tends to produce relatively inaccurate
solutions when the grid contains thin cells and abrupt charng resolution. This situation is most
likely the cause for the loss of accuracy (see the grid eobsgerved foPQM ihgihs - PQM ihgihs
compared wittPQM ihgihs (regridding) -PQM ihyihs (remapping) in Table 2.

Using higher-order schemes also becomes valuable whemdfile gontains sharp features that
tend to shrink most of the grid cells away from boundaries pladeaus. This behavior is exem-
plified in Figure 6 where a comparison between low-orddm ih4-PLM ) and high-order Qm
theihs - PQMihgihs) regridding-remapping schemes is presented after thatérstion. The low-
order scheme fails to obtain an accurate grid, fails to gemharp elbows and is inaccurate within
boundary cells. The high-order scheme provides a remedetetthree flaws. In this example, the
lack of resolution near boundaries is due to the isopycnaireaf the grid and may be problematic.
If the grid is to be subsequently modified to include moresceéiar the boundaries — e.g., to refine
the bottom boundary layer or the surface mixed layer —, ineate boundary reconstructions would



lead to inaccurate cell values and could impair the physitagrity of the solution. In that respect,
we notice that Table 2 shows a decrease in the reconstruetion (second number in each cell)
when, for a given regridding scheme, the remapping is imgaovThis error reduction is mostly
due to an improved boundary representation since the smatettior does not pose any particular
problem.

[Figure 6 about here]

In all experiments presented in the following section, ame regridding iteration is performed
when building continuous isopycnal grids (as opposed tatiteg until convergence to a small toler-
ance). In practical applications, iterating until convasrge would be too computationally expensive
because it would require several computations of recocigtduprofiles for both the regridding and
the remapping at each time step. We do care, however, abeuathility of the algorithm to con-
verge to a final state. In situations where a steady stateacheal, it is important that successive
regridding-remapping events do not alter the dynamicss phoperty of non-alteration is the moti-
vation behing investigating the convergence of the regmigidemapping algorithm.

5 Test cases

In this section, two-dimensional test cases are considenedle different vertical coordinate sys-
tems are compared and the effect of regridding-remappihgrees on continuous isopycnal co-
ordinate configurations is investigated. We intentionaldynot include any experiment using the
full-fledged version of the ocean general circulation mo&eich experiments will be the subject of
a forthcoming paper focusing on the choice of the most adeqeatical grids for realistic, large-
scale simulations, using the material presented in thispap

5.1 Ocean model description

The prototype ocean model we use is built on the layered swgdyocean model HIM (Hallberg
Isopycnal Model) (Hallberg and Gnanadesikan, 2006), whvels enhanced with the regridding-
remapping algorithm presented in this paper to provide ggized vertical coordinate capabili-
ties. An Arakawa C grid is used to discretize the equatiogerigise. The dynamics is split into
barotropic and baroclinic modes using two different timepst(Hallberg, 1997) and both estimates
of the free-surface elevation fields are reconciled usiregapproach advocated by Hallberg and
Adcroft (2009). The thermodynamical component of the maday use yet a different time step,
which reduces the computational overhead. The pressudiegtaforce is analytically calculated
following Adcroft et al. (2008). This algorithm assumes ast@ant representation of temperature
and salinity within each layer, which had to be modified tocactt for higher-order polynomial
reconstructions. As will be shown, this step is necessagngure consistency with respect to the
initial conditions.

As implemented, the regridding-remapping toolbox and thgimal version of the model are
black boxes to each other. If regridding is activated, a &nfilpag is switched on. Otherwise, the
original layered isopycnal version of the model is used. Whemew grid is to be defined, the
model transfers the primitive model variables — layerwiséouity components, layer thicknesses,
temperature, salinity, various tracers — to the regriddigimapping toolbox. The latter takes care of
designing a new grid and remapping all variables onto thegrév Those variables are then trans-
ferred back to the model's dynamical core to continue thetintegration. Regridding-remapping
capabilities are called after one or several thermodynaitiime steps. Between regridding events,
the dynamics simply evolves according to the layered varsibthe model. When regridding-
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remapping is activated at every thermodynamical time dtepgextra computational cost incurred
varies between 5 % and 10 %, depending on which schemes ate use

5.2 Motionless state

In a model configuration without external forcing, where siéas are constant layerwise and
the pressure gradient force calculation assumes so, thelrstade remains motionless unless layer
interfaces are inclined. This motionless state is repieseim Figure 7a for a very simple two-
column, two-layer configuration. In a continuous isopyec@brdinate framework where regridding
and remapping are used, achieving this motionless statérescthe initial state and the pressure
gradient force calculation to be consistent. In such a fraonk, the positions of layer interfaces
depend on target densities and global reconstructionfelfdyer densities lead to different global
density reconstructions in different water columns, theatmns of interface densities will be differ-
ent as well. Interfaces will end up inclined and lead to sppabus motion. To avoid this spurious
behavior, layer densities must be initialized in a way teatdnsistent with the reconstruction used
for the regridding. The densities must be chosen to gendrateame global density profile within
each column. Given this constraint, a motionless statebeithchieved only when the pressure gra-
dient force computation is modified to take into account #ne that across-layer reconstructions
are no longer constant. These modifications are illustraté&igure 7b.

[Figure 7 about here]

The ability to preserve a motionless state in the regriddamapping framework is important.
It is a verification of consistency requirements, as exgdiabove and illustrated in Figure 7. It
also assesses the robustness of remapping and regriddiemes since those should not trigger
spontaneous motion. Figure 8 shows that the regriddingzpgimg algorithm passes this sanity
check when stratification is linear, a linear equation dfesi;used, initial conditions are consistently
prescribed and the pressure gradient force calculatioouas for linear reconstructions of density
and bottom topography. Details on the numerical experimerggaen in the figure’s caption. As a
consequence, terrain-following coordinates do not expee any pressure gradient errors when all
properties are linear. However, any nonlinear departutegenerate pressure gradient errors that
are larger than the machine-precision threshold seen Agparabolic density profile, for example,
would generate spurious motion unless the model is modifiedttount for this kind of profile. In
particular, bottom topography should be represented quiadtly rather than linearly. We do not
intend to build a terrain-following coordinate model (thiertical grid was merely shown to illustrate
the potential of regridding) and this avenue has not yet e@temented. It is, however, feasible
and the considerations outlined above pave the way to do so.

[Figure 8 about here]

To represent topography with continuous isopycnal andordinates, vanishing layers are used
in such a way that the sum of all layer thicknesses is equdlgddcal ocean depth. In theory, the
thickness of these vanishing layers should be zero. Howawiarite minimum thickness is used in
our model for two reasons. First, high-order edge-value edge-slope estimates behave unstably
when there is a large and abrupt change in layer thicknes$&sof more orders of magnitude). In
the following experiments, we set the minimum thicknessaa® 3 m. Vanished layers generated
during the regridding are therefore inflated to comply witistthreshold. This issue could be ad-
dressed by getting rid of vanished layers before regriddind remapping and adding them back.
This procedure will be investigated in the future. Secomy, iaaccuracy in the pressure gradient
force calculation — even if it is as low as machine-precidemel, which is unavoidable — results in
spontaneous motion. Very thin vanishing layers, say on tHeraf10~'° m (as is used in HIM),
are overly sensitive to this kind of spontaneous motionnéf/é is negligible in magnitude. The
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effect is a large change in density (via advection of salttentperature) within the vanishing layer
and subsequent non-negligible motion. The latter is dubdaeagridding in response to this density
change and to a nonzero pressure gradient force. As a carsegjufor the experiment shown in
Figure 8, a minimum thickness @D ~! m was necessary to keep the velocity magnitude as low as
1072 m s~!. When a minimum thickness af—3 m is used, the velocity magnitude increases to
about10~® m s~!, which is acceptable and recommended for realistic apjdics.

5.3 Internal waves

[Figure 9 about here]

We now consider a 1000-m deep, 200-km wide, flat-bottometangeilar basin to assess the
accuracy of regridding-remapping schemes in the contebofotating, internal wave propagation.
Two different initial states are used and are presentedguargi9. The first one (Figure 9a) contains
20 layers and a thin pycnocline made up of 8 layers. Due totaohsalinity increments from layer
to layer, the vertical salinity structure features sharadignts. We wish to assess the ability of
the regridding-remapping schemes to resolve the sharpagisdwith the least amount of spurious
diffusion. The second one (Figure 9b) is simpler and cos®6t10 uniformly-distributed layers.
It will be used to investigate the effect of boundary recarsttons on accuracy. In all cases, the
horizontal grid contains 160 cells. This overly high resimo — 40 cells would be sufficient — is
chosen as a way to limit the amount of diffusion caused byrthe layerwise advection scheme.
While this scheme is justified for layered isopycnal coortBsavhere along-layer gradients tend to
be reduced;-coordinate solutions may suffer a lot from spurious diifusintroduced by horizontal
advection schemes. If the horizontal grid is too coarss,spurious diffusion might dominate that
from remapping, which would render our analyses irrelevahie baroclinic and thermodynamical
time steps are both 450 s. The barotropic time step is 5 s. drédding-remapping algorithm is
called every themodynamical time step. There is neither amdom diffusion, nor tracer diffusion
(vertical and horizontal). Density is set to be equal torsgli Any spurious diffusion is a direct
result of remapping, and to a much lesser extent, layervdsedion. All results are shown after 25
days.

[Figure 10 about here]

Figure 10 investigates the ability of continuous isopyarad > regridding-remapping schemes
to preserve the vertical salinity structure, when settifighe model with the thin pycnocline initial
conditions. For the:-coordinate experiments, the grid is refined at mid-depth.il®##Qm brings
about only marginal improvement overm for continuous isopycnal coordinates, usingM for
z coordinates turns out to be necessary to obtain an accepgahition in terms of the vertical
salinity structure. The solution obtained with the layeismpycnal version of the model serves as a
reference for the pycnocline thickness. Yet, we do not eixihecsolutions to look identical (there is
a noticeable phase lag between the layered and continumpcisal solutions). Different vertical
coordinates are known to have great influence on the sokiiol determining which coordinate
system is the best is out of the scope of this paper. We usaybegld isopycnal version of the model
as reference for its inherent adiabatic nature and abilifgréserving the vertical salinity structure.

[Figure 11 about here]

An assessment of the accuracy of these schemes is proposéguime 11 where the volume
change of a range of salinity classes is used as a proxy fosumieg spurious diffusion. By con-
struction, the layered isopycnal version is adiabatic amckesno remapping is involved, each salinity
class strictly conserves its volume. The closer a regrigldémapping scheme approaches this be-
havior, the more accurate it is. The results of Figure 11 confhat the improvement gained by
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usingPQM overPPMis not significant for continuous isopycnal coordinatesilevheing substantial
for z coordinates. Figures 12 and 13 repeat the foregoing expetiosing uniform: coordinates,
which is particularly challenging considering the thinsies the pycnocline. These clearly con-
firm the superiority ofPQM . The fact that accuracy saturation is reached withv for continuous
isopycnal coordinates may not be surprising. Continuonigyisnal coordinates try to mimic the be-
havior of impermeable surfaces in a different way. When aateuinigh-order regridding-remapping
schemes are used, the layers that are obtained via reggiduty be close enough to that obtained
by letting the model evolve as a layered model from the lase tiegridding-remapping was per-
formed. In this respect, regridding barely modifies the gundl the remapping step has negligible
effects. The spurious diffusion that we experience beydwedsaturation level attained withPm
may well be a dominance of spurious diffusion caused byrthe layer advection scheme. Using
higher-order advection schemes will shed light on thisa@ssthich is future work.

[Figure 12 about here]

[Figure 13 about here]

Finally, Figure 14 investigates the effect of using higk@rreconstructions (i.e., extrapolating)
within boundary cells on spurious diffusion using continaaspoycnal coordinates, starting with
the initial conditions presented in Figure 9b. When a sinmba1 reconstruction is used within
boundary cells, the global error does not decrease no nveltieh regridding-remapping scheme is
used. In that case, spurious diffusion near boundaries latety dominates any spurious diffusion
that might occur in the interior. It turns out that employimigh-order reconstruction schemes within
boundary cells is critical for not wasting the overall pdtehof high-order regridding-remapping
schemes. This experiment exemplifies one more time the isuipeof PPMandPQM overpPLM, as
illustrated by the very small amount of volume change (les®t0.3 % overall) in salinity classes
and hence, the quasi-adiabatic nature of the solution. &fesence, running the layered isopycnal
version with a coefficient of diapycnal diffusion®k 10~°> m? s~! yields the same global amount of
spurious mixing. Since the initial vertical displacemamnour experiment (about 100 m) is about one
order of magnitude larger than what is typically experighegthin the thermocline, we expect the
amount of spurious diffusion caused by regridding-remagpo be even smaller in more realistic,
larger-scale numerical simulations and to approach valgsto molecular processes.

[Figure 14 about here]

5.4 Dense overflow
[Figure 15 about here]

Resolving dense overflows has become a classic benchmaskdan models and, in particular,
to study the influence of vertical coordinates. In this paperdo not aim at drawing any conclusion
as to which vertical grid is the best to represent overflowast Btudies have largely contributed to
the conclusion that isopycnal coordinates are ideal far kimd of problem (Winton et al., 1998;
Papadakis et al., 2003; Legg et al., 2006). We consider sotettimg 4000-m deep, 800-km wide
basin with a 800-m deep shallow bay containing dense watgui@& 15). A linear stratification is
prescribed for which salinity varies from 34 at the surfaz8% at the bottom. The equation of state
simply assumes that density is equal to salinity. Water énlthy has a salinity of 35. The model
is run for 10 days with a baroclinic and thermodynamical tistep of 900 s. The barotropic time
step is 10 s. Horizontal and vertical momentum diffusionse€to10* m? s~ and10=* m? s71,
respectively. There is no tracer diffusion. The horizomgadl resolution is 10 km (80 cells) and 40
layers span the vertical space.

[Figure 16 about here]
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[Figure 17 about here]

Figures 16 and 17 present four snapshots (days 1, 2, 5 and tt@ solutions obtained with the
layered isopycnal, continuous isopycnaknd sigma versions of the model. The layered isopycnal
version is considered the reference solution and the cootis isopycnal version yields a similar
solution. By contrast, the and sigma versions are not-surprisingly very different &l both
isopycnal versions. The extremely large amount of numkego&rainment in thez-simulation is
explicable by the relatively coarse vertical and horizbmésolution compared with the bottom
boundary layer thickness (Winton et al., 1998). As shownigufe 18, ourz-coordinate results
are extremely similar to that obtained using MITgem (Matkégal., 1997a,b), which is a state-of-
the-artz-coordinate, C-grid ocean general circulation model. TH&@@dm simulation is hydrostatic
and uses the seventh-order horizontal advection schem@f@S&nted by Daru and Tenaud (2004),
which is less diffusive than theLm layerwise advection scheme used in our model. Differences
in simulation outputs are due to, and may not be limited tiedint parameterizations, different
topography representations and different advection seserfhough similar overall, these differ-
ences emphasize the importance of using a single framewbekstudying the effect of vertical
coordinates. In Figure 19, the solution obtained with theticmous isopycnal version is presented
at day 2 when using six different regridding-remapping seeg. UsingeQM for both the regridding
and the remapping is necessary to fully capture the denseepalong the slope. It also turns out
that continuous reconstruction schemes (P&m — not shown — an®3wm) are very inappropriate
for this kind of flow featuring sharp density gradients.

[Figure 18 about here]

[Figure 19 about here]

6 Conclusions

We have developed a consistent and efficient high-ordeiddigg-remapping algorithm for use
in generalized coordinate ocean models. The regriddingapping algorithm conserves volume (or
mass in a non-Boussinesq version), momentum, salt, temope@d any other passive tracer to ma-
chine precision. It is a necessary ingredient for long-teoean climate modeling. Our regridding-
remapping framework has been used in a series of idealizedimnensional numerical experiments
as well as two-dimensional internal wave and overflow tes¢saln all case®QM schemes provide
the most accurate solutions for regridding and remappingr. @odel is capable of replicating,
sigma- and isopycnal-coordinate results. To our knowledgehave presented the first ocean model
capable of representing continuous isopycnal coordinates

Particular emphasis has been put on the design of the consnsopycnal framework, which
uses the traditional layered isopycnal paradigm in the dyidg representation of the system be-
tween regridding-remapping events. Using continuousyisogls allows a more elegant and accu-
rate construction of truly hybrid vertical coordinates,iethopen the door to many other choices of
vertical coordinates. This study will be the subject of aiooming paper. However, moving away
from a layered framework has consequences, one of whiclghibat along-layer density gradi-
ents no longer vanish. The Montgomery potential approackhdmputing pressure gradient forces
is no longer valid and the finite volume form of the pressunmedacalculation must be used with
the modifications presented in this paper to account forssetayer density variations. In contrast
with layered isopycnals, layerwise advection now plays aenofluential role as it can alter the
layer-averaged densitieeLM may no longer be an acceptable choice for layerwise advettia
hybrid vertical coordinate model. In a hybrid coordinatanfrework, diffusion tensors need to be
rotated to minimize spurious diapycnal mixing. We beligvewever, that the benefits of the more
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general character of our approach far outweigh these additicosts. It should also be noted that
a number of physical processes may be more easily added todbel when the vertical grid is
not constrained to layered isopycnals. These processeslengeothermal heating, double diffusion
and interior heat sources and sinks.

In developing this regridding-remapping algorithm, higider reconstructions within boundary
cells turned out to be crucial for obtaining sensible resatid for reducing spurious diffusion near
boundaries. Advection schemes may borrow the ideas putfolim this paper regarding boundary
extrapolations to increase their accuracies near boussland extrema. We also note that, in our
model, vertical advection is implicitly embedded in the sgping step and directly benefits from
high-order schemes.

The issue of which vertical coordinate system is best faydescale ocean simulations remains
outstanding (Griffies et al., 2000a). Though intercompmariexercises have taken place in the past
(Chassignet et al., 2000; Willebrand et al., 2001) as amgitéo address this issue, they generally
involve different models, which, apart from the verticaldgrdiffer in many other aspects (Figure
18). This limitation raises the question as to whether diffiees in model solutions are only caused
by different vertical grids and stresses the need for a sifigimework in which to evaluate the
impact of coordinate choice. Only a few models are able toxum®do coordinates within the same
framework and none of them include an isopycnal represientalhe hybrid coordinate paradigm
presented in this paper, though still incomplete for fudldijed studies of the large-scale ocean
circulation, enables the comparison of many differentigattcoordinate systems within a single
framework.

A The continuous cubic interpolation scheme #3m)

A cubic has four degrees of freedom. Both edge values an@slage used to determine them.
Because a cubic is potentially fourth-order accurate, weire the edge-value and edge-slope esti-
mates to be fourth-order accurate as well. As a sanity cleeglgbal cubic profile must be exactly
retrieved via piecewise cubic interpolation. A cubic cansiiten locally as

C(§) = ap + ar1€ + a2€® + az€®. (11)

Given the left and right edge valueg andup, respectively, and the left and right edge slopés
andu’,, respectively, the four coefficients in Eq. (11) are given by

ag = ur,
!/
ay = up,

12
az = 3(ugp—wug)—up—2up, -
az = up+up+2(ur —ug),

where aC oC
/
— —_— = = T:’Eh’ l)
ul, DEle=0 = Gy le=eil
, aC oc
Wy = Gelemt = Gl

The above relationships are easily derived from Eq. (1).
In the following, use will be made of the following slope ddifions. Note that the variable
is generic here. Given a cell of widfh- and left and right neighboring cells of widtlhg, andh g,
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respectively, the limite@LM slopeos is defined as
o signoc) min (|oL|, |or|, loc|) if TLOR > 0, (13)
0 otherwise

whereo, andog are the left and right one-sided slopes, respectively,cant the centered slope.
The sign function is equal to 1 for positive arguments, -1rfegative arguments and O otherwise.
The one-sided and centered slopes are defined as

- _ ﬂcffLLthJrhC B 2@077][/
r hr, + hc hc he
Up — UC he + hgr Up — UC
o = 2 X = 2— 14
" hc + hgr he he (1)
URp — UL
oc =

2—
hr +2hc + hr’

whereu,, uc anduy are the cell values associated with the left, center and cigifs, respectively.
Note that the slopes defined by Eq. (14) are the traditional heer limited PLM slopes (e.g.,
Leveque, 2002), written for nonuniform grids.

Once unique edge-value estimates have been computed,rthbpuanded by neighboring cell
values when needed. The ensuing edge values will not be madifierwards. Edge-slope estimates
are then computed and modified, if necessary, to ensurestensy with the limited>Lm slopeo,
as defined by Eq. (13). These steps are very similar to thesévad with thepQm limiter (White
and Adcroft, 2008). For example, if theLM slope is nonnegative, both edge slopes should be
nonnegative as well. If one of them is inconsistent, it islsetero.

At this point, edge values are bounded and edge slopes asestat. Yet, this does not guaran-
tee monotonicity. The existence of a local extremum is exjaivt to the existence of an inconsistent
inflexion point, namely an inflexion point where the slopenisansistent with theLm slope. When
that happens, the edge slopes must be modified in order to theveflexion point away from the
interior and onto one of the edges.

The second derivative'(®) (¢) of Eq. (11) is given by

CP (&) = by + i€, (15)

whereby = 2a5 andb; = 6as, as defined by Eq. (12). Iy, = 0, the second derivative (&) is
single-signed:C (&) is parabolic and monotonic. The algorithm stops herey I 0, there is an
inflexion point located a§;, = —bo/b1. If &, ¢ (0,1), the curvature irf0, 1] is single-signed and
the cubic is monotonic. The algorithm stops here;jfe (0, 1), the slope of the cubic &t= ¢;,,,
C’(&p), must be computed. i£7(;,) has the same sign as them slope, the cubic is monotonic
and the algorithm stops here. If the sign@f¢;,) is opposite to the sign of tireLm slope, the cubic
is not monotonic. These four cases are illustrated in Figoreln the last case, the inflexion point
is moved away from the interior and toward one of the edgesyraing to the following rule:

lor| < |lor| = move inflexion point onto left edge

16
lor| < lor] = move inflexion point on right edge (16)

where the slopes are defined by Eq. (14). White and Adcroft§2pfbovide a justification for using
the above rule. Shifting the inflexion point must be done bjystthg the edge slopes. Both cases
are now explained.

[Figure 20 about here]
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Shifting the inflexion point onto the left edge Requiring the inflexion point of the cubic to be
located on the left edge means that we must enforce Eq. (M3rish at¢ = 0. Hence, we must
haveas = 0, or

3(ugp —up) —up —2uj, = 0. a7)

Because both edge slopes may be adjusted, Eq. (17) is oseniteéd and only one slope can be
modified. Solving Eq. (17), tentative adjusted slopes (ified by an asterisk) are given by

. 3
up = §(uRfuL)f§u' .
up = 3(ur —up)—2uf,

Three situations may occur. (Lf" is consistent, (2).; is consistent and (3) both;* and’; are
inconsistent. The case where both tentative slopes aréstemisis included in either (1) or (2).

When case (1) occurs, we keep the new left edge slope and certifgutight one according to
Eq. (17). The new slopes are defined as follows:

/ _ 1%
ur = urg,

up = 3(ur—ur)—2uf.

When case (2) occurs, we keep the new right edge slope and tetmeueft one according to Eq.
(17). The new slopes are defined as follows:

3
/ /%
u = —(Ur —urp)— Zup.
L= 5 ) - u
/ /%
uR = uR7

Finally, when case (3) occurs, the left edge slope is setléquaro (see justification by White and
Adcroft (2008)) and the the right edge slope is coputed atingrto Eq. (17). The new slopes are

up, = 0,

up = 3(ur—ur).

An illustration of this limiter is provided in Figure 21.
[Figure 21 about here]

Shifting the inflexion point onto the right edge Requiring the inflexion point of the cubic to be
located on the right edge means that we must enforce Eq. ¢Mgnish at = 1. Hence, we must
haveas + 3az = 0, or

3(urp —up) + 2uy +uf = 0. (18)

Because both edge slopes may be adjusted, Eq. (18) is owemiieéd and only one slope can be
modified. Solving Eq. (18), tentative adjusted slopes (ified by an asterisk) are given by

uf = 3(ur —up)— 2ufg.
3 1
up = i(uR—uL)—iu'L,

Three situations may occur. (L} is consistent, (2)/}; is consistent and (3) both; and/; are
inconsistent. The case where both tentative slopes aréstemisis included in either (1) or (2).
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When case (1) occurs, we keep the new left edge slope and certifgutight one according to
Eqg. (18). The new slopes are defined as follows:

/ Ik
UL == UL,
3 1
! /%
up = §(uR_uL)_§uL'

When case (2) occurs, we keep the new right edge slope and tetheueft one according to Eq.
(17). The new slopes are defined as follows:

up, = 3(ur—ur)—2up.

up = ulp,

Finally, when case (3) occurs, the right edge slope is sailéquero (see justification by White and
Adcroft (2008)) and the the left edge slope is computed atingrto Eq. (18). The new slopes are

u;, = 3(ur—urg),

/ —
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REMAPPING

PCM | PLM PPM PPM | POM | PQM

he | iha | ihaibs | iheihs
i ,34M h N N
g PLM h B2 B2 12 B2 12

[a)

% | D S
S:U th:il’\gh?) h h2 h3 h3 h4 h4
e | B N T

Table 1: Orders of accuracy of a selection of regridding-remapping schemesidered in the paper. An or-
der of accuracyx™ means that the scheme can exactly retrieve a global polynomial profidegreen — 1
based on the cell values. In other words, it means that the new grid eBtaia regridding will be exact
and the remapping between the old and new grids will be exact too. The sshamehe following:pP1m
th4 (continuous piecewise linear reconstruction with, edge-value estimates).m (classical conservative
piecewise linear reconstructiorpPm h4 (classical conservative piecewise parabolic reconstruction, as pre-
sented by Colella and Woodward (1984)FMih4 (conservative piecewise parabolic reconstruction with
edge-value estimates)3M ih4ihs (continuous piecewise cubic reconstruction with edge-value estimates
andihs edge-slope estimate®QM ihaihs (COnservative piecewise quartic reconstruction with edge-value
estimates andhs edge-slope estimate®QM ihgihs (Conservative piecewise quartic reconstruction with
edge-value estimates aives edge-slope estimates).
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REMAPPING

PCM PLM PPM PPM PQM PQM
h4 ih4 ih4ih3 iflﬁih5
38 7 8 8 8 7
P1M 1.72(=2) | 4.80(=3) | 1.34(=3) | 1.37(=3) | 5.22(—4) | 2.04(—4)
ihy 6.91(—3) | 3.19(—4) | 1.53(—4) | 1.40(—4) | 1.49(—4) | 1.54(—4)
5.81(—3) | 3.30(—4) | 5.16(—5) | 2.59(=5) | 1.14(—5) | 1.08(—6)
> 50 6 8 8 7 8
oL 1.87(=2) | 4.49(=3) | 2.82(=3) | 2.93(=3) | 5.40(—4) | 1.82(—4)
8.33(=3) | 2.36(—3) | 1.68(—3) | 1.67(=3) | 2.04(=3) | 2.03(—3)
o 7.94(=3) | 4.21(—4) | 2.98(—4) | 3.02(—4) | 1.48(—5) | 6.40(—6)
z > 50 4 3 3 3 3
8 | PPM | 4.48(—2) | 4.83(—=3) | 1.35(=3) | 1.39(—3) | 5.31(—4) | 2.06(—4)
€ | iy 2.90(—2) | 2.03(—4) | 5.01(=5) | 3.29(=5) | 2.90(=5) | 2.60(—5)
2 3.04(—=2) | 3.41(—4) | 5.32(=5) | 2.61(=5) | 1.16(=5) | 7.69(—7)
> 50 7 4 4 3 4
P3M 1.90(—2) | 4.82(=3) | 1.43(—3) | 1.48(—3) | 5.32(—4) | 2.02(—4)
ihgihs | 1.18(=2) | 3.94(—4) | 1.24(—4) | 1.07(—4) | 1.59(—4) | 1.50(—4)
9.79(=3) | 3.46(—4) | 5.74(=5) | 3.26(—5) | 1.16(=5) | 9.17(=7)
> 50 9 6 4 3 3
PQM | 4.57(=2) | 5.39(=3) | 1.60(—3) | 1.40(=3) | 5.31(—4) | 2.08(—4)
ihgihs | 7.53(=3) | 2.74(=3) | 2.74(—4) | 3.15(=5) | 2.07(=5) | 1.12(—4)
4.44(-3) | 3.57(—4) | 7.41(=5) | 2.67(=5) | 1.16(—5) | 8.56(—7)

Table 2: Performance evaluation of 30 regridding-remapping schemes usksietonine the location of a grid
based on the profile given by Eqg. (6) and on 21 uniformly-distributegktaralues. Each scheme is assessed
with the help of four numbers. Each of these numbers is explained dimedén Section 4. The first one is the
number of iterations required to attain grid convergence, which happees the deviation between successive
grids, as defined by Eq. (7), is small enough. The second one issuneaaf the error on the last grid between
the exact profile and the reconstruction used for remapping. It isateby Eq. (8). The third one, as defined
by Eq. (9), is a measure of the error between the last approximatecantigrids. The fourth, and last, one is a
measure of the error on the last grid between the approximate cell \ahdesxact cell values. It is defined by
Eq. (10). See text for explanations as to the likely cause for the losccafary (see the grid error) observed
for PQMihgihs - PQMihgihs compared wittPQM ihgihs (regridding) -PQM ihaihs (remapping)
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(i) Piecewise polynomial reconstruction based on cell averages.
T T T T T T

cell average of u

reconstruction based on cell averages

(ii) A new grid is considered and superimposed on the reconstructed profile.
T T T T T

new grid

(iii) Cell averages are computed by integration. Reconstruction is repeated.
T T T T T

new cell average

T

Figure 1: A regridding-remapping algorithm occurs in three steps. The schenilaiigtsate a generic situation
where the grid is defined by thecoordinates (horizontal axis) and depicted by the dotted lines and whsre
the variable that is being remapped (vertical axis). (i) Piecewise poliai@mofiles are reconstructed based on
cell averages on a given grid. (ii) A new grid is considered and supeased on the reconstructed profile. (iii)
Analytic integration of the reconstructed profile over the cells of the newgjvids the cell averages for this
new grid. The reconstruction step is then repeated. This illustration depéctgetieral case of reconstructions
on nonuniform grids featuring discontinuities across cell interfaces.
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1.0
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0.4F
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Figure 2: lllustration of the difference in the grids obtained when using target laglereg versus target inter-
face values. In all panels, the initial grid is uniform in space and the initihlbeerages are represented by
thick (blue) lines. The objective is to determine the new grid (representeldebvertical dashed lines) based
on target values. In panels (a) and (b), the new grid is determinedtlatlhe integral of density over the
new layers matches the target valyés0, 0.25, 0.50,0.75, 1.0}. Depending on what direction of integration
is chosen (from left to right as in (a) or from right to left as in (b)), th@dor which the new cell averages
are the target values may be different. Notice that some layers haighgdn On the other hand, (c) depicts
the case where a global reconstruction based on the cell averageapsited and the grid is determined by
finding the location of the target interface valugs0, 0.2, 0.4, 0.6, 0.8, 1.0}. This third method always yields

(a) Regridding based on layer target densities
(solution 1)

0.4 r

0.2

0.0t

(b) Regridding based on layer target densities
(solution 2)

| 1 |
| | 10 —
: new grid : : : :
1 1 1 0.8+ 1 1
| | 6 |
| | 1 | 1
I mnew cell averages ! I . . 1
I f | 0.6 vanished layers \
1 1 | ) l I
| | 1 |
old cell averages I © 1 “ I 1
| 1 044 L |
| | 1 | 1
1 1 1 1
I o I 1 l o !
— | 1 0.2+ | 1
1 1 1 1 1
| | 1 | 1
I | 1 | 1
—— i : 0.0 —— :
| | 1 | 1
xT x
(c) Regridding based on interface target densities
| | |
1.0+ ! 1 I
| | |
i?terpolated edge val‘\les :
0.8 : ‘
interpolation :
0.6 !
u

a unique grid.
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—— PIM ihy [2.32 x 107 2]
— PLM [1.41 X 10_2]

——— pPM ihy [5.38 X 10 3]
——— P3M ihgihg [1.05 X 10 2]
—— paum ihgihg [2.28 X 107 3]

Figure 3: Comparison of continuous{m ihs andP3M ihsihs) and conservativeP(M, PPM ihy and PQM
iheihs) reconstruction schemes. The exact profile is depicted by a thick, liglytljme. The reconstruc-
tion schemes are based on the analytical cell values representedibynitarlight gray lines. There are 16
uniformly-distributed cellspLM andPPm are discontinuous whilelm andpP3m are continuous (by construc-
tion). BecauseQM allows the representation of sharper curvatures, it remains continubilss being con-
servative. Thel,-norm of reconstruction errors are indicated in the legend. OverallpdiBwious schemes
perform much better than continuous schemes of the same orderseeitey can represent sharp gradients,
with PQM being the best.
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Figure 4. Comparison oPLM, PPMandPQM extrapolation schemes within the left boundary cell. The thick,
light gray line represents the exact solution. Cell averages are dejpigteldick, horizontal lines. The grid is
represented by vertical dotted linesom performs the best.
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exact

plm ih4 (regridding)

plm (remapping) —— -
rrrrrrrrrrrr celt averages - - -

exact m—
plm ih4 (regridding)

plm (remapping) — — -
rrrrrrrrrrrr celt averages - - -

Figure 5: lllustration of the first full iteration for the regridding-remapping algorithused for continuous
isopycnal coordinatesp1M ihs and PLM are used for regridding and remapping, respectively. The exact
profile is depicted by a thick gray line. The cell averages are indicatedtiysymbols, which are located
at the cell centers of the previous grid. In the top panel, cell averagekn@wn on a uniform grid (this is
the initial condition of the problem). Thelm ihs scheme is used to find the location of target values, which
are represented by the horizontal dotted lines. The correspondingsgegdresented by vertical dotted lines.
The dotted lines depict the new grid onto which the remapping occurs loastetPLM reconstruction. The
exact grid is drawn with gray vertical lines. When the vertical dotted aagl jnes coincide, it means that the
approximate grid is close to the exact grid. The bottom panel shows théaitadter remapping has occurred,;
the new cell averages have been computed. Arbwih4 reconstruction is determined based on the new cell
averages in order to determine the next grid, which is depicted by the dimigedPLM-based remapping then
occurs to compute the new cell averages. Iterations continue until gemee (to a tolerance of 16) of the

grid is attained.
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exact m—
plm ih4 (regridding

plm (remapping) ———
rrrrrrrrrrrr celk averages - - -

eXaCt m—
pgm ih6/ih5 (regridding)
pagm ih6/ih5 (remapping) ——— -

rrrrrrrrrrrrrrrr eell-averagesy 111y

S 1| 0L 05

Figure 6: Comparison between low-order (top) and high-order (bottom) regridcemapping schemes after
the first iteration for a profile containing sharp features (same profitaatsof Figure 3). In both cases, the
reconstructions are based on the cell averages symbolized-hy These averages were obtained after the
first iteration. Notice the inability of low-order schemes to representsfeatures and to properly extrapolate
within boundary cells. These shortcomings lead to slower convergemtdoa accuracy caused by rapid

degradation of the solution.
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Figure 7: Pressure gradient force issue and solution illustrated using a two-lapéigaration with bottom
topography occupying the lower half of the left bottom cell. Four tracts e@e shown. The number within
each tracer cell is the salinity and we assume that density is equal to salihigypr&€ssure gradient force is
computed at velocity points (staggered with respect to tracer points) lgyatien along the sides of the volume
represented by the dashed line (Adcroft et al., 2008). The objdstieeset up the initial conditions and modify
the pressure gradient force calculation in order for the model to be niesis.

(a) In the original layered approach, reconstruction is constant witith &ayer and density is constant along
a layer. The right side integral exactly counterbalances the left siderahtmgd the bottom side integral. The
pressure gradient force is zero and there is no motion. Howeverggralding context, both layer thicknesses
must be determined by seeking the location of the interface dedisityet us assumeLM is used for regridding
and remapping. If the original configuration is used, the location of iatertiensity5 will be higher than the
current interior interface within the left column. In the right column, therifiatege will remain in place because it
precisely corresponds to an interface densitg®based on a linear reconstruction. If the left interior interface
moves upward, the pressure force is no longer zero and motiong)aehich we want to avoid.

(b) To avoid motionand maintain the current layer thicknesses, the salinity within the bottom left cedt mu
be such that the piecewise linear reconstruction (shown with the dasittedidine) is the same within each
column. In doing so, the regridding step will not displace the interior intexf&or the pressure gradient force
to be zero, side integrals must no longer assume constant reconstrastionust take into account the linear
reconstruction.
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(a) z coordinates (b) Continuous isopycnal coordinates
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Figure 8: Velocity contours representative of a motionless state using differemticate systems. The Gaus-
sian sea mount lies in a 4000-m deep, 200-km wide basin. Stratificationas &ne a linear equation of state
is used. There is no forcing and initial conditions are prescribed to emmationless evolution, as explained
in Figure 7. There is no viscosity, no diffusion and no bottom drag. Thexe0 layers in the vertical and 40
cells across. The grid is depicted in light gray. The dynamical and th@yn@mical time steps are both 900
s. Regridding-remapping is carried out at every time step using:h4 for remapping (and also regridding in
(b)). Contours are drawn at velocitiesi~'? m s* (solid line) and—10~> m s™! (dotted line) at day 5 for
z and continuous isopycnal coordinates. Contours 6~ '3 m s~ are used for terrain-following coordinates.
The maximum absolute value is abdgt ' m s~*, which is due to round-off errors originating in the pressure
gradient force calculation. (&) coordinates using partial cells. (b) Continuous isopycnal coordinaieg a
non-uniform target density distribution to illustrate the possibility of locally iasieg vertical resolution. (c)
Terrain-following coordinates. Velocity anomalies are smaller for theabe+following coordinates because
there is no vanishing layer.
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—1000 m

0 200 km

Figure 9: Initial conditions used for the internal wave experiment. The basin is i86ep and 200 km wide.
There are 160 cells in the horizontal. In both cases, salinity is uniformlyilaliséd across layers, independently
from their thicknesses (the salinity increment from layer to layer is cotjst&alinity varies from 34 at the
top to 36 at the bottom. A linear equation of state is used and only dependdiitys Initial interfacial
displacements are prescribed according to a cosine function. The igpakment from left to right is 150
m. (a) There are 20 layers and a thin pycnocline comprises 8 of theyrlLagler thicknesses are uniformly
distributed.
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Layered isopycnal (no remapping)

Cont. isop. (PLM - PCM) z refined grid (pcMm)
ﬁl
Cont. isop. (PPM ihy - PPM thy) z refined grid (PPM ihy4)

;l

Cont. isop. (PQM ihaths - PQM thaihs) =z refined grid (PQM thgihs)

Figure 10: Salinity contours (dark blue is 34, dark red is 36, increment is 0.2) at28a starting with the
initial state represented in Figure 9a. Results from the layered isopyersbm of the model is shown in the
top panel, in which case there is no remapping, no diabatic effects anértieal/structure of the pycnocline
is well preserved. In this regard, this solution is the reference. Conimisopycnals based on high-order
regridding-remapping schemes are able to preserve the sharpglipend\ote thatLm - PCMis so diffusive
that it erodes all stratification. When usingcoordinates (with local refinement at mid-depth), orlym is
capable of decently resolving the sharp salinity gradients around thegys.

32



Continuous isopycnal coordinates z coordinates (refined at mid-depth)

INITIAL VOLUME DISTRIBUTION

ol ...l

VOLUME CHANGE WITHIN EACH DENSITY CLASS (IN %)

PLM - PLM (0.053) pLM (0.29)
+10% +300%
—10% —300%

PPM ihy - PPM thy (0.027) PPM thy (0.27)
+10% +300%
—10% —300%

PQM ihgihs - PQM thaihg (0.023) PQM ihgihs (0.18)
+10% +300%
—10% —300%

Figure 11: Analysis of spurious diffusion introduced by the various regriddingapping schemes used in
the experiment described in Figure 10. The initial volume distributionsesemt the initial volumes contained
within each of the salinity classes uniformly spanning the range 34-36auBecof the thin pycnocline, most
of the volume is contained within lower and higher salinity classes. Initialitiond are altered by an initial
regridding-remapping step, which explains the differences betwagmcous isopycnals and The volumet-

ric change is shown for these two coordinate systems and for diffecieimes. Note the scale difference (10 %
for continuous isopycnals and 300 % for. Volumetric changes for layered isopycnal coordinates are strictly
zero, which serves as reference. The numbers between paentied to each scheme name represent the
total amount of volume that has shifted between salinity classes compdtethe initial state (total volume

is 1). PQM only marginally decreases spurious diffusion with continuous isopydnélshe improvement is
substantial with: coordinates.
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Layered isopycnal (no remapping)

z uniform grid (PCM) z uniform grid (PLM)

z uniform grid (PPM thy) z uniform grid (PQM ihgihs)

%

Figure 12: Salinity contours (dark blue is 34, dark red is 36, increment is 0.2)yaP8astarting with the initial
state represented in Figure 9a. Results from the layered isopycnarvefsthe model is shown in the top
panel, in which case there is no remapping and no diabatic effect anéttieal/structure of the pycnocline is
well preserved. In this regard, this is the reference. These resultplement those presented in Figure 10 in

that uniformz coordinates are used.
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z coordinates (uniform)

INITIAL VOLUME DISTRIBUTION

VOLUME CHANGE WITHIN EACH DENSITY CLASS (IN %)

pcM (0.74) pLM (0.32)
+300% +300%
—300% —300%
PPM ihy (0.37) PQM thgihs (0.18)
+300% +300%
—300% —300%

Figure 13: Analysis of spurious diffusion introduced by the various regriddingapping schemes used in
the experiment described in Figure 12. The initial volume distribution sgmes the initial volumes contained
within each of the salinity classes uniformly spanning the range 34-3GWBef the thin pycnocline, most of
the volume is contained within lower and higher salinity classes. The volunegiaicge is shown for different
remapping schemes. Volumetric changes for layered isopycnatlicades are strictly zero, which serves as
reference. The numbers between parentheses next to each staemeepresent the total amount of volume
that has shifted between salinity classes compared with the initial state (tbiatevés 1). While it may be
argued that none of these schemes is particularly convincing —ryedisplaces almost 20 % of the total
volume away from initial salinity classes pQM fares much better than its peers. Note thatn completely
empties out the first and last two salinity classes because of spuriousioliff
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Continuous isopycnal coordinates Continuous isopycnal coordinates
without boundary extrapolation with boundary extrapolation

INITIAL VOLUME DISTRIBUTION

VOLUME CHANGE WITHIN EACH DENSITY CLASS (IN %)

PLM - PLM (0.037) PLM - PLM (0.0280)
+10% +5%

—10% —5%

PPM thy - PPM thys (0.037) PPM thy - PPM thy (0.0031)
+10% +5%

—10% —5%
PQM ihgaths - PQM thathg (0.037) PQM ihaths - PQM thaihs (0.0026)
+10% +5%
— L1 L | T — —
—10% —5%

Figure 14: The effect of using high-order reconstructions (i.e., extrapolatiithin boundary cells on spurious
diffusion is investigated using continuous isopycnal coordinates, stariihgthe initial conditions presented
in Figure 9b. The initial volume distribution represents the initial volumes doathwithin each of the salinity
classes uniformly spanning the range 34-36. Target densities hamechesen to yield thicker boundary cells.
The volumetric change is shown for different remapping schemes whé&oundary extrapolation is used (left)
and when boundary extrapolation is switched on (right). Volumetric obsufgy layered isopycnal coordinates
are strictly zero, which serves as reference. No matter which schemsed; spurious diffusion caused by
usingPcMm within boundary cells is dominant. Higher-order extrapolations substantellyease the amount
of spurious diffusion, leading to less than 0.3 % of volume being displ&oed initial salinity classes when
usingPQM.
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Figure 15: Basin geometry and initial conditions for the dense overflow experimeninear stratification
is considered where salinity varies from 34 at the surface to 35 at thenboense water (salinity of 35) is
located in the shallow bay and flows downslope. In this experiment, densityus to salinity.
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Layered isopycnal coordinates Continuous isopycnal coordinates
(PQM ihgths - PQM ih4ih3)

34.4 34.6 34.8 35.0
salinity

Figure 16: Comparative snapshots for the dense overflow experiment usingyethisopycnal version of
the model (left panels) and the continuous isopycnal version (righelppbased on theQM ihysihs - PQM
ihaihs regridding-remapping scheme.
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z coordinates (PQM ihgihs) o coordinates (PQM ihgihs)

34.4 34.6 34.8 35.0
salinity

Figure 17: Comparative snapshots for the dense overflow experiment using-¢berdinate version of the
model (left panels) and the-coordinate version (right panels). Both versions are based ongheihgihs -
PQM ihgihs remapping scheme. These snapshots should also be compared wétprtbesnted in Figure 16.
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z coordinates (PQM thgihs) MITgcm

34.0 34.2 34.4 34.6 34.8 35.0
salinity

Figure 18: Comparative snapshots for the dense overflow experiment using ¢berdinate version of the
hybrid coordinate model (left panels — same as that of Figure 17) diiddvh (right panels) in hydrostatic
mode. Differences in simulation outputs are due to, and may not be limitediffierent parameterizations,
different topography representations and different advectiomsebleThough similar overall, these differences
emphasize the importance of using a single framework when studyindfétot @ vertical coordinates.
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Layered isopycnals

PLM - PLM

PPM hg4 - PPM hgy PPM ihy - PPM 1hy

P3M thgtihs - PQM thgths PQM thgihs - PQM thyihs

34.4 34.6
salinity

Figure 19: Comparative snapshots at day 2 for the dense overflow experinserg different regridding-
remapping schemes for the continuous isopycnal version of the mobelvery top panel shows the layered
isopycnal version. Using the latter as reference, it appears that @hQf ihaiths - PQMihaihs regridding-
remapping scheme is able to fully capture the descending plume.
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Figure 20: In each panel, the cubic has consistent edge slopes. Yet, this edgeeslogistency does not
guarantee monotonicity. The presence of a local extremum — and taledoren of monotonicity — depends on
whether the slope at the inflexion point (marked by an empty circle) isstens$ (here positive). (a) The cubic
has no inflexion point: it is degenerated into a parabola. (b) The cubiarhaglexion point lying outside the
cell. Thus, the curvature is single-signed within the cell and the cubic is tanito (c) The inflexion point
lies within the cell but the slope at the location of the inflexion point is consistdm.cubic is monotonic. (d)
The slope at the location of the inflexion point is inconsistent. The cubic immnontonic and needs further
limiting.
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cell value—,

unlimited cubic

limited cubic

Figure 21: P3M limiter in action when the initial cubic has consistent edge slopes (both eduessioe positive
and thePLM slope is positive) but has an inconsistent inflexion point. In both panasinflexion point is
shifted onto the left edge.
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